

World Road Association (PIARC) XIII International Winter Road Congress, Québec City

February 8 to 11, 2010

Morton Satin

Salt Institute, Alexandria, VA

Research Supported

Assessment of Best Management Practices

(Prof. Michael Stone, University of Waterloo)

Novel Modeling of Stormwater Management

(Prof. Bahram Gharagahi, Guelph University)

Assessment of Best Management Practices

(Prof. Michael Stone, University of Waterloo)

Assessment of Best Management Practices Project Rationale and Context

Code of Practice for the Environmental Management of Road Salt - 2004

-better manage road salts to minimize environmental impacts of chlorides while maintaining road safety.

Project Rationale and Context

TAC Syntheses of Best Practices for Road Salt Management

- 1. Salt Management Plans
- 2. Training
- 3. Road and Bridge Design
- 4. Drainage and Stormwater Management
- 5. Pavements and Salt Management
- 6. Vegetation Management
- 7. Design and Operation of Road Maintenance Yards
- 8. Snow Storage and Disposal
- 9. Winter Maintenance Equipment and Technologies

http://www.tac-atc.ca/English/informationservices/readingroom.cfm

Project Rationale and Context

Assumption:

Voluntary, state-of-the-art salt management practices when applied as per Code recommendations will benefit the environment and road authorities by:

- reducing chloride levels
- improving water & soil conditions
- increasing operational efficiency
- improving roadway safety
- providing cost savings

Knowledge Gaps

- No systematic analysis of the environmental benefits of Code recommendations
- Rigorous data required for Environment Canada formal review of Code of Practice in 2010

Filling the Gaps

Project designed to assess the efficacy of current voluntary road salt management practices for reducing environmental chloride.

Specific Objectives

- 1. Review the status of salt management practices in the Regional Municipality of Waterloo, ON.
- 2. Collect, analyze and report historical road salt application rates in Regional Municipality of Waterloo and compare this information with data from other municipalities not employing best practices.

Anticipated Project Outcomes

A rigorous assessment of current voluntary road salt management programs designed to reduce chloride inputs from winter road maintenance practices.

Workshop/International Conference: provide a forum for researchers and stakeholders to discuss the successes and challenges of winter road maintenance practices and to demonstrate the utility of recent innovations/practices to provide guidance to improve policy documents and practice.

Anticipated Project Outcomes

Recommendations for improving policy and practice related to mitigating adverse environmental impacts associated with winter road maintenance practices

Provide data for Environment Canada Code of Practice Review

Research Team

Dr. M. Stone (PI) Planning and Geography, U. Waterloo Dr. J. Marsalek Environment Canada Dr. D. Rudolph Earth Science, U. Waterloo Dr. J. Price Geography, U. Waterloo Dr. S. Tighe Environmental Engineering, U. Waterloo Dr. M. Emelko Environmental Engineering, U. Waterloo Dr. D. Saini Environment & Resource Studies, U. Waterloo

Regional Municipality of Waterloo

• RMOW population: ~500,000

• 20 major well fields, 9 of which are situated within urban areas.

• 3 key well fields show increasing chloride trends.

Chloride Concentration at the Greenbrook Well Field

Calibration – Observed Data

Bester, M. L., E. O. Frind, J. W. Molson, and D. L. Rudolph. (2006). "Numerical Investigation of Road Salt Impact on an Urban Well Field". *Groundwater* 44:165 - 175.

1.2

Cross section 'A--A A' for 2002*

*Bester, M. L., E. O. Frind, J. W. Molson, and D. L. Rudolph. (2006). "Numerical Investigation of Road Salt Impact on an Urban Well Field". *Groundwater* 44:165 - 175.

Cross section 'A—A' for 2040*

*Bester, M. L., E. O. Frind, J. W. Molson, and D. L. Rudolph. (2006). "Numerical Investigation of Road Salt Impact on an Urban Well Field". *Groundwater* 44:165 - 175.

25% Reduction in Road Sallt

Initial Indications

Greenbrook Well Field Road Salt Monitoring

Novel Modeling of Stormwater Management

(Prof. Bahram Gharabaghi, Guelph University)

Novel Modeling of Stormwater Management

City of Toronto Chloride Monitoring Stations

Chloride Guidelines: Drinking Water and Irrigation

Drinking Water

- » Chloride: 250 mg/L (aesthetic objective)
- Sodium: 200 mg/L (aesthetic objective) (medical officer to be notified when Na concentrations exceed 20 mg/L)

Irrigation Water

> Chloride: 100 to 700 mg/L

Chloride peaks during winter maintenance

Goals of research program

Research Objectives

 Advance scientific knowledge on urban stormwater runoff with focus on salt-induced snow melt;

- Evaluate the effectiveness of various salt management practices; and
- Optimize salt management practices using advanced modeling tools and real-time weather forecast

Determination of Exceedance Events

Chloride Event Statistics for Don River at Bloor Monitoring Station

Year	Chloride Threshold	No. of Events	Total Duration of Exceedance (hr)	Mean Event Duration (hr)	Standard Deviation (hr)	Mean Event Max. Conc. (mg/L)	Standard Deviation (mg/L)
2002	230 mg/L	12	2522	209	± 223	826	± 785
	860 mg/L	8	413	51	± 46	1460	± 558
	1,500 mg/L	3	81	27	± 26	1993	± 565
2003	230 mg/L	7	3080	454	± 902	809	± 1103
	860 mg/L	8	1611	201	± 229	1653	± 905
	1,500 mg/L	7	961	137	± 148	2301	± 746
2005	230 mg/L	12	1629	135	± 186	1711	± 1817
	860 mg/L	8	354	44	± 39	2488	± 1679
	1,500 mg/L	7	142	20	± 19	3020	± 1443
Note: Year 2004 was removed from the table because of limited data availability.							

Using the latest in Weather Information Systems, application rate analysis, groundwater data modeling,

and computer-controlled stormwater storage management, the goal is to level out and minimize chloride discharges and their impact on the environment

Thank You!

About Us Contact Us News, events & media Education Center Salt FAQ Member Center Login

About salt Uses & benefits Production & industry Issues in focus Articles Seafedten (Enter Keywords

Salt Matters: **Highway Safety**

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam.

Did You Know?

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu. Read More $\ensuremath{\mathsf{w}}$

Salt Institute

Area road crews ready to fight winter's worst Mike Hoeft, Green Bay Press Gazette October 10, 2008

News

find

Salt Sensibility Blog

Subscribe to the Salt Sensibility RSS Feed.

Publications

Road salt in short supply, local officials

Sam Kusic, Indiana Gazette October 10, 2008

All Posts

Calendar

Safety successes with a cautionary note

Salt Sensibility

Industry Insights

Learn more about salt from an industrial standpoint:

About Salt Production » Production Technologies » U.S. Salt Sales »

Morton Satin Director, Technical and Regulatory Affairs The Salt Institute www.saltinstitute.org

1.2