

XIII INTERNATIONAL WINTER ROAD CONGRESS

QUÉBEC, FEBRUARY 8 TO 11, 2010

Québec

SUSTAINABLE WINTER SERVICE FOR ROAD USERS

A DISCUSSION OF ADVANCEMENTS IN DATA COLLECTION AND PROVISION USING NEXT GENERATION ITS TECHNOROGY IN REGIONS OF COLD AND HEAVY SNOW

T3 - 4A - 34 - Hirohiko HATTORI East Nippon Expressway Company Limited

Engineer

h.hattori.ac@e-nexco.co.jp

Author

·Kazuhiko HARUYAMA

- ·Kunio MITSUI
- Hirohiko HATTORI
- · Masatoshi YOKOTA

1.Introduction (Background to the experiments)

Map of the area administered by NEXCO East, and the Experimental site in our experiment

An Area of Snowfall compared with other parts of the world (Snowfall and Temperature)

Heavy Snowfall

Unable to Climb Uphill

Strategies to support smooth, safe driving in snowy regions

①Snow Removal by Snow-Remover Vehicles

② Spreading of Agents to preventfreezing of the road surface

Strategies to support smooth, safe driving in snowy regions

⑦Snow and Ice Information Boards

Road closure km-hrs by cause

3.2 The Site of Experiment < Collision diagram >

00 · · · Number of Accidents on snow-covered (2003-2007)

Table 1List of Standard Threshold Values

Collected Data		Standard Threshold Values (Current specifications)	Minimum Unit (off-line)	
Run History	Running Speed	Interval of data storage 100m	0.1 sec cycle	item
Behaviour History	Longitudinal Acceleration	- 0.25 G	0.01G	Report item
	Lateral Acceleration	± 0.25 G	0.01G	
	Angular Velocity	±8.5deg/s	0.1deg/s	

3. Outline of Experiment

3.1 Experimental Equipment

Control Box

The inside

Inside-Vehicles

Video camera installation situation

3.3 Experimental method Fig.6 — Simulation running Patterns

Test Patterns on snow road

Outline of experimental method

on a snow-covered road

Simulation runs

Sharp speed reduction

- Pattern 1 speed reduction 65km/h→ 20km/h (1)
- Pattern 2 speed reduction 55km/h→ 20km/h
- Pattern 3 speed reduction 40km/h→ 20km/h

Sharp speed reduction + abrupt turn of steering

- Pattern 4 speed reduction 65km/h→ 20km/h + lane-change 4
- 5 • Pattern 5 speed reduction $55 \text{km/h} \rightarrow 20 \text{km/h} + \text{lane-change}$
- 6 Pattern 6 speed reduction 40km/h→ 20km/h + lane-change \bigcirc Normal running(Lane-Changing) 8

Set-speed run(Driving at a set speed of 60 km/h)

 $(1 \sim 6)$, (8); 2 runs per each pattern(1 run performed 3 times, total sample size 18) ;2 runs (all data,total sample size 10480) 7)

 \bigcirc

3

4. Results of assessment and verification

4.1 Speed

4.3 Lateral acceleration

following threshold values

The following threshold values were obtained for the items measured.

Speed (Sampling interval) within 80m (Altered from 100m intervals)

♦ Longitudinal acceleration (Threshold value) — 0.25G or higher

5. Conclusion

- Possibility of the abnormal traffic flow detection.
- Possibility that the accident can be prevented and be reduced beforehand if information obtained from the vehicle is used well.
- Hereafter the accumulation of further data, and effectiveness and accuracy improvement of the collection data.

- The upgrade of the dissemination of the safe driving support.
- The actual experiment data becomes reference.

Thank you for your kind attention.

East Nippon Expressway Company Limited, Japan

h.hattori.ac@e-nexco.co.jp

4.2 Angular Velocity

4.4 Longitudinal acceleration

legend

- Minimum / maximum values during each pattern run
- Minimum / maximum values during lane change
- Total data during run at set speed

Fig.10-Distribution of longitudinal acceleration

4.6 Detection of Hazard Spots

Example of Probe Car Information (Vehicle Behavior Data)

東日本

DCD . DIADC