

XIII INTERNATIONAL WINTER ROAD CONGRESS

QUÉBEC, FEBRUARY 8 TO 11, 2010

Québec

SUSTAINABLE WINTER SERVICE FOR ROAD USERS

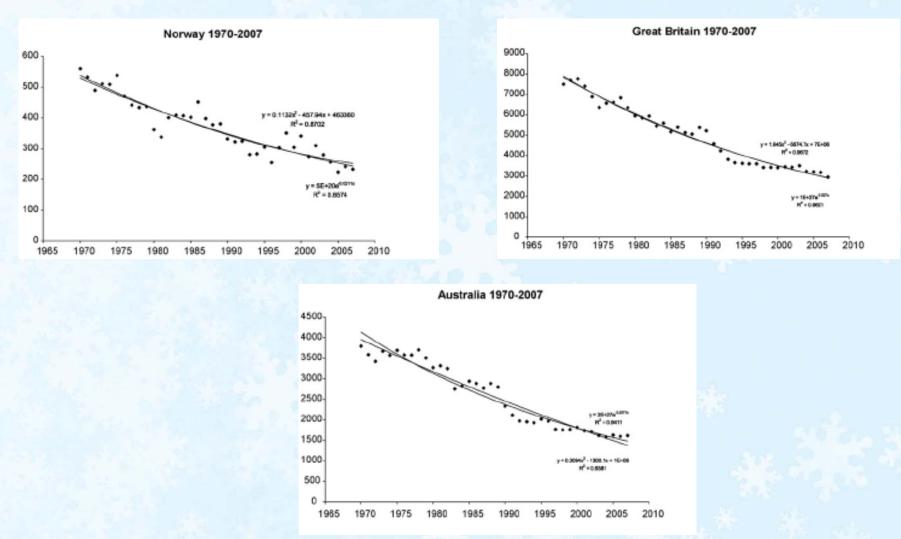
Long-term Trends in Snowfall-related Crash Risks

> Jean Andrey, Derrick Hambly & Brian Mills

> > University of Waterloo

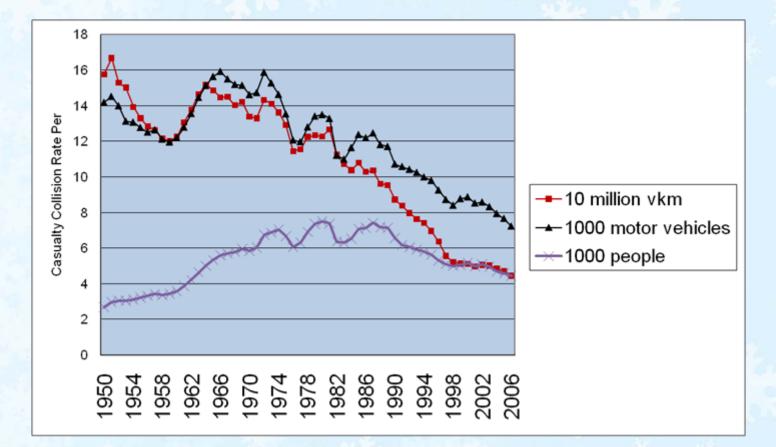
Department of Geography and Environmental Management

jandrey@uwaterloo.ca



Environnement Canada

UNIVERSITY OF


LONG-TERM TRENDS IN TRAFFIC FATALITIES

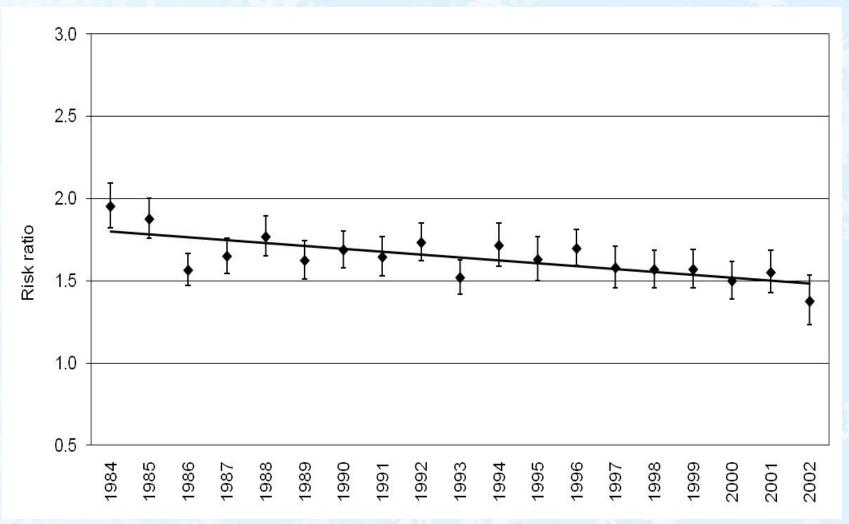
Source: Elvik, R. (2010) The stability of long-term trends in the number of traffic fatalities in a sample of highly motorised countries. *Accident Analysis and Prevention* 42:245-260.

TRENDS IN ROAD CRASHES INVOLVING INJURY, CANADA

Data Sources: Transport Canada, Environment Canada

CHANGES IN MOBILITY IN CANADA

Year	Population (millions)	Registered Vehicles (millions)	Auto-mobility (persons/vehicle) (km/vehicle) (km/person)
1950	13.7	2.6	5.3 9000 1700
1973	22.6	10.2	2.2 11000 4900
2006	32.6	20.0	1.6 16000 10000



SITUATIONAL RISK FACTORS

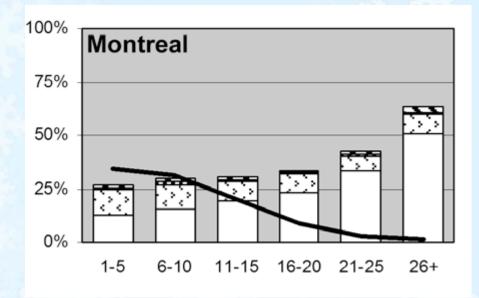
- Darkness \rightarrow roadway lighting
- For young drivers, passengers \rightarrow novice restrictions
- Roadside obstacles \rightarrow obstruction removal
- Weather that reduces friction, impairs visibility or makes vehicle handling more challenging increases driving risks
 Injuries typically increase by 50 to 100 percent and sometimes more during precipitation
 In terms of weather-related crash risk, what is the
- combined effect of improved tires, better roadway and vehicle engineering, changes in roadway maintenance, and individual driver decisions?

RAIN-RELATED CRASH RISK

Source: Andrey, J. (2010) Long-term trends in weather-related crash risks. *Journal of Transport Geography* 18:247-258.

STUDY OBJECTIVES

- To estimate the average relative risk of injury collision during snowfall and other winter weather
- To document the trend in relative risk of injury collision during these same conditions
- Focus is on 10 Canadian cities, 1984-2002



CITIES INCLUDED IN THE ANALYSIS

	Population, 2001 (city)	Annual # of Snow Days	Annual Snowfall (cm)	Annual Days with Max Temp ≤ 0 °C	% Time Snowing
London	336,539	66	202.4	61.3	9.8
Sudbury	155,219	78	274.4	103.9	10.6
Brampton Toronto	325,428 2,481,494	47	115.4	57.2	5.8
Ottawa Gatineau	774,072 102,898	66	235.7	81.3	7.3
Montreal	1,039,534	60	217.5	77.4	7.2
Chicoutimi-Jonquiere	114,850	75	303.3	111.0	14.6
Moncton	61,046	64	349.9	74.2	8.3
Halifax	185,033	60	230.5	57.1	5.6

ILLUSTRATION OF WEATHER INCIDENCE AND RELATED DRIVING RISKS

x-axis indicates number of casualties per 6 hour period

% of 6 hour periods with:

Rain Snow Rein Rain Now

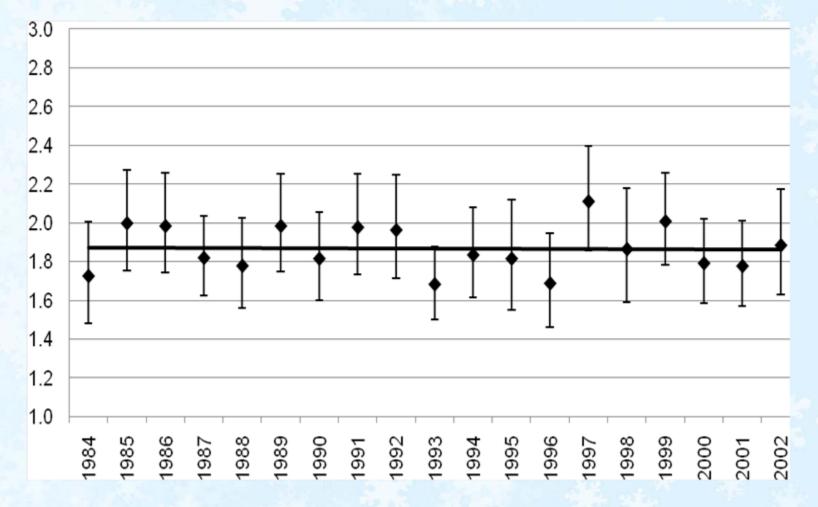
% of 6 hour periods by casualty count

SAMPLE DATA

	% Time Condition Met	% Events Included	Event- Control Pairs	# Injury Collisions
All Winter Precipitation	4.7	48	6,205	19053
6-hour Snowfall		S. See		
0.39 to 1.00 cm	1.4	47	1,709	3598
1.01 to 2.00 cm	0.8	45	953	3096
> 2.00 cm	1.2	49	1,646	5737
Both rain and snow	0.5	55	693	2537
Freezing rain, ice pellets	0.9	49	1,204	4085

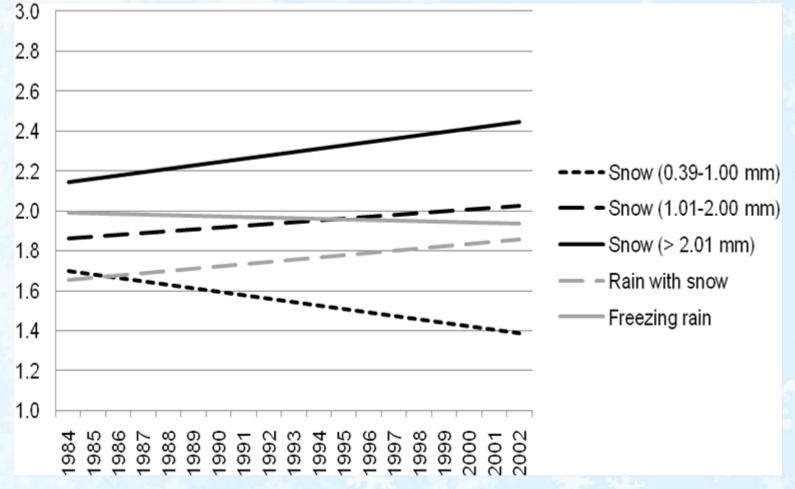
EVENT-CONTROL DEFINITIONS

6-ho	ur Event Criteria	6-hour Control Criteria
At lea	ast 4 cm snowfall	No more than trace precipitation
	during at least 3 out of -the-hour observations	Good visibility
'Weather' re	eported for at least 50% of crashes	No reports of 'weather' or icy roads



RISK ESTIMATES AND TRENDS

	Risk Ratio Relative to Good Seasonal Conditions	Trends in Risk Ratio
All Winter Precipitation	1.865	-0.0008
6-hour Snowfall		
0.39 to 1.00 cm	1.476	-0.0174
1.01 to 2.00 cm	1.888	+0.0089
> 2.00 cm	2.189	+0.0166
Both rain and snow	1.716	+0.0110
Freezing rain, ice pellets	1.935	-0.0031



TREND IN THE RELATIVE RISK OF INJURY COLLISION DURING WINTER PRECIPITATION

TRENDS BY PRECIPITATION TYPE AND AMOUNT

CONCLUSIONS

- Per capita injury rates are approximately the same as they were in the early 1960s
- Crash risk during winter precipitation is highly elevated (relative risk of injury collision = 1.87 ± 0.20)
- There is no temporal trend in the relative risk of injury collision during winter precipitation events
- This suggests the need for more pointed interventions

