

XIII INTERNATIONAL WINTER ROAD CONGRESS

QUÉBEC, FEBRUARY 8 TO 11, 2010

Québec

SUSTAINABLE WINTER SERVICE FOR ROAD USERS

Snowplow Deployment Management Method Considering Attributes of Region and Route

Tetsuya OGAMI

Civil Engineering Research Institute for Cold Region JAPAN

Researcher

E-mail: oogami-t22aa@ceri.go.jp

Necessity of a snowplow deployment plan

Purpose of a deployment plan

= Appropriate and economical road management

Deficiency : hindrance of traffic Excess : uneconomical

What is a snowplow deployment plan?

Deployment plan

= Estimation of the number of snowplows needed to satisfy the control level

Expressed by the concept equation below

Deployment plan

= Control level / Snow removal performance

Concept equation

Deployment plan (no. of snowplows)

Control level

Snow removal performance

Concept equation

Deployment plan (no. of snowplows) Control level

Snow removal performance

What are the control levels?

Deployment plan _ (no. of snowplows)

Control level

Snow removal performance

Specifically :

Snowfall depth, snow removal time, etc.

Control level in Hokkaido, Japan (snowfall depth)

National highways National highways (trial)

Freeway

Sapporo city roads

Sapporo city roads (trial)

: 5 – 10 cm

- : 10 cm or more
- : 3 5 cm

: 10 cm or more

<u>: 15 – 20 cm</u>

Control levels are not uniform,

And may vary depending on circumstances

What is snow removal performance?

Deployment plan (no. of snowplows) Control level

Snow removal performance

Snow removal performance

- = Mechanical performance \times Site conditions
 - Engine power
 - Work width
 - Other

- Weather
- Road structure
- Other

In the case of fresh snow

Snow removal performance = Snow removal speed

The snow removal speed is not clearly determined !

Snow removal speeds (published values)

Deployment plan . (no. of snowplows)

Snow removal speed

Control level

Published snow removal speeds

- Speeds vary by source
- Only uniform values are presented

Differences in site conditions are not reflected

Snow removal speeds (actual values)

Average snow removal speeds

The causes of differences in speed have not been identified

Study policy

Deployment plan (no. of snowplows)

Snow removal speed

Control level

Establishment of standard snow removal speeds suitable for the attributes of individual regions and routes

- Development of efficient and economical deployment plans
- Equalization of snow removal service levels
- Quantitative evaluation of snow removal work efficiency

Study policy

Continuous improvements in snow removal efficiency are enabled through ongoing study

Tasks for the establishment of standard snow removal speeds

- Extraction of factors (attributes of regions/routes)
 → What factors affect snow removal speeds?
- Examination of basic data
 - → How can extracted factors be evaluated quantitatively?
- Analysis of correlation between speeds and factors
 → How can multiple extracted factors be analyzed?

Extraction of factors

Possible factors affecting snow removal speeds

Factor affecting speed							
Roadside conditions	DD length Length of other urban areas Length of flat areas	W eather	95% snow fall intensity Snow quality (dry snow) Snow quality (sugar snow)				
	Length of mountainous areas LR (left-to-right) length of continuity of private houses		Double-lane length Multiple-lane length Added/climbing lane length				
Traffic	Nighttime traffic volume Snow-fbwing gutter length No.of roadside stations No.of chain attachment/removal		No. of roadway width change points Sharp curve R < 150 Length of sbpes with a gradient of 5% or greater Median strip length Sidewalk length Bridges				
Specific factors	sites No.of tunnels in the mountainous area No.of unsignalized intersections	Road structure					
Québec	No. of retum points		LR (left-to-right) length of guard fences No. of bus stops No. of signalized intersections				

Examination of basic data

Examination principles

- \rightarrow Quantitative counting
- → Continuous study

Data used

Telemeters, Road traffic census results, Road management databases, Maintenance and management ledgers, etc.

Analysis of correlation between speeds and factors

Multiple regression analysis of a log-linear model

- Multiple regression analysis is a technique that focuses on one among multiple variables to ascertain how it is affected by the other explanatory variables
- → Suitable for cases such as snow removal speeds that involve multiple factors

Model equation for standard snow removal speeds

Analysis of correlation between speeds and factors

Correlation among factors affecting snow removal speeds

Determination of standard snow removal speeds

Calculation formula for standard snow removal speeds (Asahikawa Development and Construction Department)

y = exp (-0.009 $x_1 - 0.214 x_2 - 0.704 x_3 + 0.162 x_4 - 2.047 x_5 - 0.110 x_6 - 0.158 x_7 + 3.128)$

- y : Standard snow removal speed
- X₁: Snowfall intensity
- X₂: Snow quality (sugar snow)
- X₃: DID length

- X₄: Length of mountainous area
- X₅: Nighttime traffic volume
- X₆: Snow-flowing gutter length
- X₇: No. of unsignalized intersections

(sufficient accuracy was ensured)

Multiple correlation coefficient = 0.865

Comparison of standard and actual snow removal speeds (reference values)

D istrict	Section	Actualsnow removalspeed (km/h)	Standard snow removalspeed (km/h)	Difference (km/h)	Percentage (%)
	а	12.45	12.33	-0.12	101
	b	12.42	12.79	0.37	97
A sah k aw a	С	12.99	12.83	-0.16	101
	d	16.32	15.27	-1.05	107
	е	15.83	17.95	2.12	88
	а	18.80	19.75	0.95	95
	b	23.58	22.10	-1.48	107
Shibetsu	С	18.53	17.79	-0.74	104
	d	20.95	19.25	-1.70	109
	е	16.94	18.75	1.81	90
	а	22.31	21.70	-0.61	103
P if ulro	b	23.71	24.14	0.43	98
D Шика	С	19.22	21.45	2.23	90
	d	23.83	24.00	0.17	99
	а	18.25	18.74	0.49	97
Fumpo	b	20.39	21.65	1.26	94
FUIAIIO	С	17.50	17.42	-0.08	100
	d	23.07	22.76	-0.31	101
	а	22.15	19.80	-2.35	112
	b	23.76	22.34	-1.42	106
Kam k awa	С	24.12	20.87	-3.25	116
	d	23.74	25.18	1.44	94
	е	16.92	19.58	2.66	86

Actualsnow removalspeed/standard snow removalspeed > 1.1 = Section where efficient snow removalis conducted

Actualsnow removalspeed/standard snow removalspeed < 0.9 = Section where inefficient snow removals conducted

Case study

Making of section reorganization plan based on the standard snow removal speed

- $\Sigma s = CI / Si$
 - Σs: Allowable snow removal time
 - CI: Allowable maximum snowfall depth (cm)

(h)

(cm/h)

(km)

(km/h)

(h)

- Si : Snowfall intensity
- $\Sigma \mathbf{e} = \Sigma \mathbf{s} \times \mathbf{y}$
 - Σe: Permissible limit length
 - Σs: Allowable snow removal time
 - y : Standard snow removal speed

Case study

Within the allowable snow removal time for all sections
 Reduction of three sections and six snowplows

Achievement of service level improvement and reduced costs

Conclusion

Study results

- Factors involving site conditions and the degree of their effect on snow removal speeds were measured quantitatively.
- A method of determining standard snow removal speeds suitable for the attributes of individual regions and routes was established.
- The validity of these standard snow removal speeds was confirmed, as it was possible to evaluate work efficiency and perform case studies for efficient and economical deployment plans.

Future plans

- Expansion of study areas and verification of mechanical performance
- Consideration of this management method's application to the spreading of antifreeze agents, etc.

Thank you for your attention.

